Penyelesaian LP dengan Metode Simpleks
Diketahui tabel tanpa Cj, Zj, (Cj - Zj) dan Bj. Selesaikan tabel simpleks hingga mencapai optimal ! | ||||||||||||
Cj | 80 | 100 | 0 | 0 | 0 | Ratio : | ||||||
Basis | X1 | X2 | S1 | S2 | S3 | Bj | a. kolom Bj dibagi kolom Kk | |||||
S1 | 0 | 3 | 2 | 1 | 0 | 0 | 18 | 18/2 = 9 | ||||
S2 | 0 | 2 | 4 | 0 | 1 | 0 | 20 | 20/4 = 5 | ||||
S3 | 0 | 0 | 1 | 0 | 0 | 0 | 4 | 4/1 = 4 | jadi nilai terkecil jadi nilai Bk | |||
Zj | 0 | 0 | 0 | 0 | 0 | 0 | b. Faktor Pengali (Fp) = 2 | |||||
(Cj - Zj) | 80 | 100 | 0 | 0 | 0 | c. Pivot = 3 | ||||||
Cj | 80 | 100 | 0 | 0 | 0 | Ratio : | ||||||
Basis | X1 | X2 | S1 | S2 | S3 | Bj | a. 10/2 = 3,3 (BK) | |||||
S1 | 0 | 3 | 0 | 1 | 0 | 0 | 10 | b. 12/2 = 6 | ||||
S2 | 0 | 2 | 2 | 0 | 1 | 0 | 12 | c. 4/0 = ~ (Terbesar) | ||||
X2 | 100 | 0 | 1 | 0 | 0 | 0 | 4 | |||||
Zj | 0 | 0 | 0 | 0 | 0 | 400 | ||||||
(Cj - Zj) | 80 | 0 | 0 | 0 | 0 | |||||||
Cj | 80 | 100 | 0 | 0 | 0 | nilai optimum Bj = 666,67 | ||||||
Basis | X1 | X2 | S1 | S2 | S3 | Bj | jadi nilai sudah mencapai optimal | |||||
X1 | 80 | 1 | 0 | 0,33 | 0 | 0 | 3,33 | yaitu dengan ketentuan n < 0 | ||||
S2 | 0 | 2 | 2 | 0 | 1 | 0 | 12 | |||||
X2 | 100 | 0 | 1 | 0 | 0 | 0 | 4 | |||||
Zj | 80 | 100 | 26,67 | 0 | 0 | 666,67 | ||||||
(Cj - Zj) | 0 | 0 | -26,67 | 0 | 0 | -26,67 |